ON PERIODIC SOLUTIONS OF DYNAMIC, SECOND ORDER, NEARLY PIECEWISE ANALYTIC SYSTEMS

PMM Vol. 31, No. 6, 1967, pp. 1108-1110

N.N. SEREBRIAKOVA
 (Gor'kii)

(Received March 2, 1967)

Necessary and sufficient conditions of existence and stability of periodic solutions of various types are obtained for a particular type of second order, nearly piecewise analytic dynamic systems.

Let us consider the system

$$
\begin{equation*}
d x / d t=y, d y / d t=-\psi(x)+\mu f(x, y) \tag{1}
\end{equation*}
$$

and let
$\psi(x)=\psi_{i}(x)$ when $x_{i-1}<x<x_{i} \quad f(x, y)=f_{i}^{(1)}(x, y)$ when $x_{i-1}<x<x_{i}, y>0$

$$
f(x, y)=f_{i}^{(2)}(x, y) \text { when } x_{i-1}<x<x_{i}, y<0 \quad(i=\ldots-1,0,1, \ldots)
$$

Here $\psi_{i}(x)$ and $f_{i}^{(j)}(x, y)(j=1,2)$ are analytic functions and μ is a small positive parameter. We assume that at the coordinate origin ($x=0, y=0$) the system (1), has the state of equilibrium of the center or "join ed center" type.

Fig. 1

Let us denote by $S_{i}{ }^{(1)}$ the lines $x=x_{i}$ for $y>0$ and by $S_{i}{ }^{(2)}$ the lines $x=x$ for $y<0$ and let us consider phase trajectories of the system (1) when $\mu=0$ and when $\mu \neq 0$, satisfying in both cases the same initial conditions

$$
\begin{equation*}
x=x_{0}, y=y_{9} \text { when } t=0 \tag{2}
\end{equation*}
$$

Assuming that the trajectories of (1) intersect the lines $S_{k}{ }^{(j)}$ at the points $P_{k 0}{ }^{(j)}\left(x_{k}, y_{k 0}{ }^{(j)}\right)$ when $\mu=0$ and at $P_{k}{ }^{(j)}\left(x_{k}, y_{k}{ }^{(j)}\right)$ when $\mu \neq 0$, we shall prove that

$$
\begin{equation*}
y_{k}^{(j)}=y_{h 0}^{(j)}+\frac{\mu}{y_{h 0}{ }^{(j)}} \int_{L_{k}}{ }^{(j)} f(x, y) d x+\mu^{2}(\ldots) \tag{3}
\end{equation*}
$$

where $L_{k}{ }^{(j)}$ is the integral curve of (1) passing, at $\mu=0$, from the point $P_{0}\left(x_{0}, y_{0}\right)$ to the point $P_{k 0}^{(j)}\left(x_{k}, y_{k 0}^{(j)}\right)$.

We shall prove first that Formulas (3) hold when the line $S_{0}{ }^{(1)}$ is transformed into the line S_{1} (1) (Fig. 1).

Solution of (1) satisfying the initial conditions (2) can be written, when $\mu=0$, as

$$
\begin{equation*}
x=x_{1}\left(h_{0}, t+\varphi_{0}\right), \quad y=y_{1}\left(h_{0}, t+\varphi_{0}\right) \tag{4}
\end{equation*}
$$

where h_{0} and φ_{0} are constants.
Considering that the system (1) has the in tegral

$$
H_{1}(x, y) \equiv 1 / 2 y^{2}+\int \psi_{1}(x) d x=h_{0} \quad\left(x_{0}<x<x_{1}\right)
$$

when $\mu=0$, we can write a solution for this system when $\mu \neq 0$ which will satisfy the in itial conditions (2), in the following form

$$
\begin{equation*}
x=x_{1}\left[\alpha_{0}(t), t+\beta_{0}(t)\right] \equiv \xi_{1}(t), \quad y=y_{1}\left[\alpha_{0}(t), t+\beta_{0}(t)\right] \equiv \eta_{1}(t) \tag{5}
\end{equation*}
$$

Here $\alpha_{0}(t)$ and $\beta_{0}(t)$ represent a solution of

$$
\begin{equation*}
\frac{d \alpha_{0}}{d t}=\mu f_{1}{ }^{(1)}\left[\xi_{1}(t), \eta_{1}(t)\right] \frac{\partial x_{1}}{\partial t}, \quad \frac{d \beta_{0}}{d t}=-\mu f_{1}^{(1)}\left[\xi_{1}(t), \eta_{1}(t)\right] \frac{\partial x_{1}}{\partial h_{0}} \tag{6}
\end{equation*}
$$

satisfying the initial conditions $\alpha_{0}(t)=h_{0}$ and $\beta_{0}(t)=\Psi_{0}$ when $t=0$.
Writing $\alpha_{0}(t)$ and $\beta_{0}(t)$ as power series in μ, we obtain

$$
\alpha_{0}(t)=h_{0}+\mu \alpha_{01}(t)+\mu^{2}(\ldots), \quad \beta_{0}(t)=\varphi_{0}+\mu \beta_{01}(t)+\mu^{2}(\ldots)
$$

where

$$
\begin{equation*}
\alpha_{01}(t)=\int_{0}^{t} f_{1}{ }^{(1)}\left[x_{1}\left(h_{0}, t+\varphi_{0}\right), y_{1}\left(h_{0}, t+\varphi_{0}\right)\right] \frac{\partial x_{1}}{\partial t} d t \tag{7}
\end{equation*}
$$

(explicit expression for $\beta_{01}(t)$ shall not be utilised, since it can be eliminated from the equations).

Let $t_{1}{ }^{(1)}$ be the least time in which the representative point moving along the trajectory of (1) reaches the line $S_{1}{ }^{(1)}$ at the point $P_{1}{ }^{(1)}\left(x_{1}, y_{1}{ }^{(1)}\right)$.

Putting $t=t_{1}{ }^{(1)}$ in (5) and expanding the resulting relation into a power series in μ, we obtain

$$
\begin{gathered}
t_{1}^{(1)}=t_{10}^{(1)}+\mu t_{11}{ }^{(1)}+\mu^{2}(\ldots) \\
x_{1}=x_{1}+\mu\left[y_{10}{ }^{(1)} t_{11}{ }^{(1)}+\frac{\partial x_{1}}{\partial h_{0}} \alpha_{01}\left(t_{10}{ }^{(1)}\right)+y_{10}^{(1)} \beta_{01}\left(t_{10}{ }^{(1)}\right)\right]+\mu^{2}(\ldots) \\
y_{1}{ }^{(1)}=y_{10}{ }^{(1)}+\mu\left[\frac{\partial y_{1}}{\partial t} t_{11}^{(1)}+\frac{\partial y_{1}}{\partial n_{0}} \alpha_{01}\left(t_{10}{ }^{(1)}\right)+\frac{\partial y_{1}}{\partial t} \beta_{01}\left(t_{10}{ }^{(1)}\right)\right]+\mu^{2}(\ldots)
\end{gathered}
$$

Taking into account the fact that

$$
\begin{equation*}
y_{10}{ }^{(1)} \frac{\partial y_{1}}{\partial h_{0}}+\psi_{1}\left[x_{1}\left(h_{0}, t_{10}{ }^{(1)}+\varphi_{0}\right)\right] \frac{\partial x_{1}}{\partial h_{0}} \equiv 1 \tag{8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
y_{1}^{(1)}=y_{10}^{(1)}+\frac{\mu}{y_{10}{ }^{(1)}} \int_{L_{1}(1)} f_{1}^{(1)}(x, y) d x+\mu^{2}(\ldots) \tag{9}
\end{equation*}
$$

where $L_{1}{ }^{(1)}$ is a curve defined by (4) and passing through the points $P_{0}\left(x_{0}, y_{0}\right)$ and $P_{10}{ }^{(1)}$ ($x_{1}, y_{10}{ }^{(1)}$).

Assuming that Formula (3) holds during the transformation of the line $S_{0}{ }^{(1)}$ into $S_{k-1}{ }^{(1)}$ we can show, that it also holds when $S_{0}{ }^{(1)}$ goes into $S_{k}{ }^{(1)}$ in the upper semiplane. Moreover, it holds when $S_{0}{ }^{(1)}$ goes into $S_{k}{ }^{(2)}$ (when the representative point passes through the straight line $y=0$ on which the pieces of the function $f(x, y)$ are joined), and the argument which led to the latter statement applies fully to the transformation of the line $S_{k}{ }^{(2)}$ (in the lower semiplane) into the initial line $S_{0}{ }^{(1)}$ (in the upper semiplane).

Let us now assume that for $\mu=0$, the system (1) has a family of periodic solutions $L\left(y_{0}\right)$ depending on the parameter y_{0}. Then the point transformation of the line $S_{0}{ }^{(1)}$ into itself near the closed curve L, have the form

$$
\begin{equation*}
y_{0}{ }^{(1)}=y_{0}+\frac{\mu}{y_{0}} \int_{L} f(x, y) d x+\mu^{2}(\ldots) \equiv y_{0}+\mu F\left(y_{0}\right)+\mu^{2}(\ldots) \tag{10}
\end{equation*}
$$

where $L=L\left(y_{0}\right)$ is a closed integral curve passing through $P_{0}\left(x_{0}, y_{0}\right)$.
We have two obvious theorems:
Theorem 1. The condition

$$
P_{0}\left(x_{0}, y_{0}^{0}+\mu y_{1}\right)
$$

is necessary and sufficient for the transformation (10) to have, at sufficiently small μ, a fixed point

$$
\begin{equation*}
F\left(y_{0}{ }^{0}\right)=0 \tag{11}
\end{equation*}
$$

which tends to $P\left(x_{0}, y_{0}{ }^{0}\right)$ as $\mu \rightarrow 0$.
Theorem 2. Let $y_{0}{ }^{0}$ be a solution of (11). If

$$
F^{\prime}\left(y_{0}^{0}\right) \neq 0
$$

then (10) has a fixed point

$$
P_{0}\left(x_{0}, y_{0}^{0}+\mu y_{1}\right)
$$

which tends to $P\left(x_{0}, y_{0}{ }^{0}\right)$ when $\mu \rightarrow 0$. This point is stable if $F^{\prime}\left(y_{0}{ }^{0}\right)<0$ and unstable if $F^{\prime}\left(y_{0}{ }^{0}\right)>0$.

The above conditions of existence and stability of periodic solutions of (1) are analogous to the corresponding conditions given in [1] for the systems which are almost Hamiltonian.

If the functions $\psi(x)$ and $f(x, y)$ are periodic in x and their period is 2π, then the phase space of (1) will be cylindrical with two similar lines $x=x_{0}$ and $x=x_{0}+2 \pi$. Theorems 1 and 2 will then refer to the fixed point corresponding to the periodic solution enveloping the phase cylinder. The curve $L\left(y_{0}{ }^{0}\right)$ will in this case be a closed integral curve of (1) with $\mu=0$, it will pass through the point (x_{0}, y_{0}) and envelope the phase cylinder.

In conclusion the author thanks N.N. Bautin for valuable advice.

BIBLIOG RAPHY

1. Pontriagin, L.S., On dynamic systems which are almost Hamiltonian. ZhETF, Vol. 2, No. 3, 1934.
